Methoxypentafluorotungsten(VI)

By A. M. NOBLE and J. M. WINFIELD* (Chemistry Department, The University, Glasgow, W.2)

ALTHOUGH compounds containing the pentafluorosulphur-(VI) group are well known,¹ the only corresponding tungsten compound appears to be WF5Cl.2 The preparation of alkylfluorosulphites from the reactions of WF₆ with dialkyl sulphites³ suggests that alkoxypentafluorotungsten compounds should be capable of existence. This has been confirmed by the formation of methoxypentafluorotungsten-(vi) from the reaction between WF_6 and $(MeO)_2SO$ at low temperatures. A quantitative reaction occurs within 10 min. at -30° according to

 $(\text{MeO})_2\text{SO} + \text{WF}_6 \rightarrow \text{MeOS}(\text{O})\text{F} + \text{MeOWF}_5.$

MeOWF₅ is a white solid m.p. $\sim 85^{\circ}$ which has been characterised by elemental analysis and its mass spectrum. It sublimes readily at 25° (10⁻⁴ mm.) and decomposes slowly on standing, significant amounts of WOF_4 and MeF being observable after 7 days. At 135°, decomposition is rapid and complete. The thermal stability of MeOWF5 is interrediate between those of $MeOPF_4$, which is stable only below room temperature,4 and EtOTiF₃ which decomposes at 215° and is polymeric in the solid state and in benzene ⁵

 ${\rm MeOWF}_5$ is soluble in C_6F_6 without decomposition to give a yellow solution; presumably the colour is due to charge transfer. Its ¹⁹F n.m.r. spectrum in C₆F₆ is typical of an AX₄ system with F_x at -118.5, F_A at -89.5 p.p.m. (both from CCl₃F internal), $J(F_AF_x)$ 66 and $J(F_x^{183}W)$ 43 c./sec. The signals due to F_x and the methoxy-group, at -5.60 p.p.m. (from Me₄Si internal) have fine structure due to HF_x coupling of 1 c./sec. The ¹⁹F nuclei are more

shielded than those in WF_6 , as expected when fluorine is replaced by the less electronegative methoxy-group,⁶ but the ¹⁹F chemical shifts² in WF₅Cl and recent studies of complex fluoro-anions⁷ suggest that other factors are important in the shielding of ¹⁹F nuclei. Similar spectra are observed in WF₆ solution and in a partially decomposed melt, indicating that in each case MeOWF₅ is monomeric with a square-pyramidal arrangement of fluorine atoms about tungsten. The Raman and i.r. spectra of the solid contain peaks attributable to methoxy- and W-F groups. While the Raman spectrum in C_6F_6 is similar to that of the solid, the present data do not afford an unambiguous determination of the structure of the solid.

In most of the reactions of $MeOWF_5$ that we have studied WOF_4 is produced, although it may be present either as an isolatable complex (e.g. with Et₂O) or weakly complexed in solution [e.g. by (MeO)₂SO]. Methyl fluoride is produced in these reactions, but in the presence of a suitable substrate (e.g. benzene), MeOWF₅ behaves as a methylating agent. As expected, analogous reactions do not occur with pyridine or C_6F_6 .

Formation of ROWF₅ from reactions of WF₆ with sulphite esters appears to be general. EtOWF₅ is thermally less stable than MeOWF₅ and has been obtained only mixed with WOF_4 , while PhOWF₅ is stable at 20°.

We thank the S.R.C. for a maintainance award (to A.M.N.).

(Received, December 19th, 1968; Com. 1742.)

- S. M. Williamson, Progr. Inorg. Chem., 1966, 7, 39.
 G. W. Fraser, M. Mercer, and R. D. Peacock, J. Chem. Soc. (A), 1967, 1091.
 J. I. Darragh, A. M. Noble, D. W. A. Sharp, D. W. Walker, and J. M. Winfield, Inorg. Nuclear Chem. Letters, 1968, 4, 517.
- ⁴ K. D Crosbie, G. W. Fraser, and D. W. A. Sharp, Chem. and Ind., 1968, 423.

- ⁵ R. Latham and R. S. Drago, Inorg. Chem., 1964, 3, 291.
 ⁶ A. Saika and C. P. Slichter, J. Chem. Phys., 1954, 22, 26.
 ⁷ P. A. W. Dean and D. F. Evans, J. Chem. Soc. (A), 1967, 698; 1968, 1154.